Metamath Proof Explorer


Theorem cases

Description: Case disjunction according to the value of ph . (Contributed by NM, 25-Apr-2019)

Ref Expression
Hypotheses cases.1 φψχ
cases.2 ¬φψθ
Assertion cases ψφχ¬φθ

Proof

Step Hyp Ref Expression
1 cases.1 φψχ
2 cases.2 ¬φψθ
3 exmid φ¬φ
4 3 biantrur ψφ¬φψ
5 andir φ¬φψφψ¬φψ
6 1 pm5.32i φψφχ
7 2 pm5.32i ¬φψ¬φθ
8 6 7 orbi12i φψ¬φψφχ¬φθ
9 4 5 8 3bitri ψφχ¬φθ