Metamath Proof Explorer


Theorem syl6mpi

Description: A syllogism inference. (Contributed by Alan Sare, 8-Jul-2011) (Proof shortened by Wolf Lammen, 13-Sep-2012)

Ref Expression
Hypotheses syl6mpi.1 φ ψ χ
syl6mpi.2 θ
syl6mpi.3 χ θ τ
Assertion syl6mpi φ ψ τ

Proof

Step Hyp Ref Expression
1 syl6mpi.1 φ ψ χ
2 syl6mpi.2 θ
3 syl6mpi.3 χ θ τ
4 2 3 mpi χ τ
5 1 4 syl6 φ ψ τ