Metamath Proof Explorer
Description: A syllogism inference. (Contributed by Alan Sare, 8-Jul-2011) (Proof
shortened by Wolf Lammen, 13-Sep-2012)
|
|
Ref |
Expression |
|
Hypotheses |
syl6mpi.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
syl6mpi.2 |
⊢ 𝜃 |
|
|
syl6mpi.3 |
⊢ ( 𝜒 → ( 𝜃 → 𝜏 ) ) |
|
Assertion |
syl6mpi |
⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl6mpi.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
syl6mpi.2 |
⊢ 𝜃 |
3 |
|
syl6mpi.3 |
⊢ ( 𝜒 → ( 𝜃 → 𝜏 ) ) |
4 |
2 3
|
mpi |
⊢ ( 𝜒 → 𝜏 ) |
5 |
1 4
|
syl6 |
⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |