Metamath Proof Explorer


Theorem syl6mpi

Description: A syllogism inference. (Contributed by Alan Sare, 8-Jul-2011) (Proof shortened by Wolf Lammen, 13-Sep-2012)

Ref Expression
Hypotheses syl6mpi.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl6mpi.2 𝜃
syl6mpi.3 ( 𝜒 → ( 𝜃𝜏 ) )
Assertion syl6mpi ( 𝜑 → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 syl6mpi.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl6mpi.2 𝜃
3 syl6mpi.3 ( 𝜒 → ( 𝜃𝜏 ) )
4 2 3 mpi ( 𝜒𝜏 )
5 1 4 syl6 ( 𝜑 → ( 𝜓𝜏 ) )