Metamath Proof Explorer


Theorem syl21anbrc

Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)

Ref Expression
Hypotheses syl21anbrc.1 φψ
syl21anbrc.2 φχ
syl21anbrc.3 φθ
syl21anbrc.4 τψχθ
Assertion syl21anbrc φτ

Proof

Step Hyp Ref Expression
1 syl21anbrc.1 φψ
2 syl21anbrc.2 φχ
3 syl21anbrc.3 φθ
4 syl21anbrc.4 τψχθ
5 1 2 3 jca31 φψχθ
6 5 4 sylibr φτ