Metamath Proof Explorer


Theorem a2and

Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypotheses a2and.1 φψρτθ
a2and.2 φψρχ
Assertion a2and φψχτψρθ

Proof

Step Hyp Ref Expression
1 a2and.1 φψρτθ
2 a2and.2 φψρχ
3 2 expd φψρχ
4 3 imdistand φψρψχ
5 imim1 ψχττθψχθ
6 5 com3l τθψχψχτθ
7 1 4 6 syl6c φψρψχτθ
8 7 com23 φψχτψρθ