Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019) (Proof shortened by Wolf Lammen, 19-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | a2and.1 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜌 ) → ( 𝜏 → 𝜃 ) ) ) | |
| a2and.2 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜌 ) → 𝜒 ) ) | ||
| Assertion | a2and | ⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) → ( ( 𝜓 ∧ 𝜌 ) → 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2and.1 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜌 ) → ( 𝜏 → 𝜃 ) ) ) | |
| 2 | a2and.2 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜌 ) → 𝜒 ) ) | |
| 3 | 2 | expd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜌 → 𝜒 ) ) ) |
| 4 | 3 | imdistand | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜌 ) → ( 𝜓 ∧ 𝜒 ) ) ) |
| 5 | imim1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) → ( ( 𝜏 → 𝜃 ) → ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) ) ) | |
| 6 | 5 | com3l | ⊢ ( ( 𝜏 → 𝜃 ) → ( ( 𝜓 ∧ 𝜒 ) → ( ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) → 𝜃 ) ) ) |
| 7 | 1 4 6 | syl6c | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜌 ) → ( ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) → 𝜃 ) ) ) |
| 8 | 7 | com23 | ⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) → ( ( 𝜓 ∧ 𝜌 ) → 𝜃 ) ) ) |