Metamath Proof Explorer


Theorem ccase2

Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses ccase2.1 φψτ
ccase2.2 χτ
ccase2.3 θτ
Assertion ccase2 φχψθτ

Proof

Step Hyp Ref Expression
1 ccase2.1 φψτ
2 ccase2.2 χτ
3 ccase2.3 θτ
4 2 adantr χψτ
5 3 adantl φθτ
6 3 adantl χθτ
7 1 4 5 6 ccase φχψθτ