Metamath Proof Explorer


Theorem syl2ani

Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypotheses syl2ani.1 φχ
syl2ani.2 ηθ
syl2ani.3 ψχθτ
Assertion syl2ani ψφητ

Proof

Step Hyp Ref Expression
1 syl2ani.1 φχ
2 syl2ani.2 ηθ
3 syl2ani.3 ψχθτ
4 2 3 sylan2i ψχητ
5 1 4 sylani ψφητ