Metamath Proof Explorer


Theorem syl2an2r

Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016) (Proof shortened by Wolf Lammen, 28-Mar-2022)

Ref Expression
Hypotheses syl2an2r.1 φψ
syl2an2r.2 φχθ
syl2an2r.3 ψθτ
Assertion syl2an2r φχτ

Proof

Step Hyp Ref Expression
1 syl2an2r.1 φψ
2 syl2an2r.2 φχθ
3 syl2an2r.3 ψθτ
4 1 3 sylan φθτ
5 2 4 syldan φχτ