Metamath Proof Explorer


Theorem syl2an2r

Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016) (Proof shortened by Wolf Lammen, 28-Mar-2022)

Ref Expression
Hypotheses syl2an2r.1
|- ( ph -> ps )
syl2an2r.2
|- ( ( ph /\ ch ) -> th )
syl2an2r.3
|- ( ( ps /\ th ) -> ta )
Assertion syl2an2r
|- ( ( ph /\ ch ) -> ta )

Proof

Step Hyp Ref Expression
1 syl2an2r.1
 |-  ( ph -> ps )
2 syl2an2r.2
 |-  ( ( ph /\ ch ) -> th )
3 syl2an2r.3
 |-  ( ( ps /\ th ) -> ta )
4 1 3 sylan
 |-  ( ( ph /\ th ) -> ta )
5 2 4 syldan
 |-  ( ( ph /\ ch ) -> ta )