Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016) (Proof shortened by Wolf Lammen, 28-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2an2r.1 | |- ( ph -> ps ) |
|
syl2an2r.2 | |- ( ( ph /\ ch ) -> th ) |
||
syl2an2r.3 | |- ( ( ps /\ th ) -> ta ) |
||
Assertion | syl2an2r | |- ( ( ph /\ ch ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.1 | |- ( ph -> ps ) |
|
2 | syl2an2r.2 | |- ( ( ph /\ ch ) -> th ) |
|
3 | syl2an2r.3 | |- ( ( ps /\ th ) -> ta ) |
|
4 | 1 3 | sylan | |- ( ( ph /\ th ) -> ta ) |
5 | 2 4 | syldan | |- ( ( ph /\ ch ) -> ta ) |