Metamath Proof Explorer


Theorem syl2an2

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016)

Ref Expression
Hypotheses syl2an2.1 φ ψ
syl2an2.2 χ φ θ
syl2an2.3 ψ θ τ
Assertion syl2an2 χ φ τ

Proof

Step Hyp Ref Expression
1 syl2an2.1 φ ψ
2 syl2an2.2 χ φ θ
3 syl2an2.3 ψ θ τ
4 1 adantl χ φ ψ
5 4 2 3 syl2anc χ φ τ