Metamath Proof Explorer


Theorem simplbi

Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998)

Ref Expression
Hypothesis simplbi.1 φψχ
Assertion simplbi φψ

Proof

Step Hyp Ref Expression
1 simplbi.1 φψχ
2 1 biimpi φψχ
3 2 simpld φψ