Metamath Proof Explorer


Theorem ad5ant124

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Hypothesis ad5ant.1 φψχθ
Assertion ad5ant124 φψτχηθ

Proof

Step Hyp Ref Expression
1 ad5ant.1 φψχθ
2 1 ad4ant124 φψτχθ
3 2 adantr φψτχηθ