Metamath Proof Explorer


Theorem imdi

Description: Distributive law for implication. Compare Theorem *5.41 of WhiteheadRussell p. 125. (Contributed by NM, 5-Aug-1993)

Ref Expression
Assertion imdi φψχφψφχ

Proof

Step Hyp Ref Expression
1 ax-2 φψχφψφχ
2 pm2.86 φψφχφψχ
3 1 2 impbii φψχφψφχ