Metamath Proof Explorer


Theorem mp2d

Description: A double modus ponens deduction. Deduction associated with mp2 . (Contributed by NM, 23-May-2013) (Proof shortened by Wolf Lammen, 23-Jul-2013)

Ref Expression
Hypotheses mp2d.1 φ ψ
mp2d.2 φ χ
mp2d.3 φ ψ χ θ
Assertion mp2d φ θ

Proof

Step Hyp Ref Expression
1 mp2d.1 φ ψ
2 mp2d.2 φ χ
3 mp2d.3 φ ψ χ θ
4 2 3 mpid φ ψ θ
5 1 4 mpd φ θ