Metamath Proof Explorer


Theorem ad2antrl

Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad2antrl χφθψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantl χφψ
3 2 adantrr χφθψ