Metamath Proof Explorer


Theorem adantl4r

Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis adantl4r.1 φσρμλκ
Assertion adantl4r φζσρμλκ

Proof

Step Hyp Ref Expression
1 adantl4r.1 φσρμλκ
2 1 ex φσρμλκ
3 2 adantl3r φζσρμλκ
4 3 imp φζσρμλκ