Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | adantl4r.1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) | |
| Assertion | adantl4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adantl4r.1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) | |
| 2 | 1 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) → ( 𝜆 → 𝜅 ) ) |
| 3 | 2 | adantl3r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) → ( 𝜆 → 𝜅 ) ) |
| 4 | 3 | imp | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) |