Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | adantl3r.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
Assertion | adantl3r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl3r.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
2 | id | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) | |
3 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) |
4 | 3 1 | sylanl1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |