Metamath Proof Explorer


Theorem adantl3r

Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypothesis adantl3r.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion adantl3r ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 adantl3r.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
2 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
3 2 adantlr ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) → ( 𝜑𝜓 ) )
4 3 1 sylanl1 ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )