Metamath Proof Explorer


Theorem sylanl1

Description: A syllogism inference. (Contributed by NM, 10-Mar-2005)

Ref Expression
Hypotheses sylanl1.1 ( 𝜑𝜓 )
sylanl1.2 ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion sylanl1 ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 sylanl1.1 ( 𝜑𝜓 )
2 sylanl1.2 ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
3 1 anim1i ( ( 𝜑𝜒 ) → ( 𝜓𝜒 ) )
4 3 2 sylan ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) → 𝜏 )