Metamath Proof Explorer


Theorem sylanl2

Description: A syllogism inference. (Contributed by NM, 1-Jan-2005)

Ref Expression
Hypotheses sylanl2.1 ( 𝜑𝜒 )
sylanl2.2 ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion sylanl2 ( ( ( 𝜓𝜑 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 sylanl2.1 ( 𝜑𝜒 )
2 sylanl2.2 ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
3 1 adantl ( ( 𝜓𝜑 ) → 𝜒 )
4 3 2 syldanl ( ( ( 𝜓𝜑 ) ∧ 𝜃 ) → 𝜏 )