Description: A syllogism inference. (Contributed by NM, 1-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanl2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
sylanl2.2 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
Assertion | sylanl2 | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
2 | sylanl2.2 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
3 | 1 | adantl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) |
4 | 3 2 | syldanl | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜃 ) → 𝜏 ) |