Metamath Proof Explorer


Theorem sylanl2

Description: A syllogism inference. (Contributed by NM, 1-Jan-2005)

Ref Expression
Hypotheses sylanl2.1 φ χ
sylanl2.2 ψ χ θ τ
Assertion sylanl2 ψ φ θ τ

Proof

Step Hyp Ref Expression
1 sylanl2.1 φ χ
2 sylanl2.2 ψ χ θ τ
3 1 adantl ψ φ χ
4 3 2 syldanl ψ φ θ τ