Metamath Proof Explorer


Theorem syldanl

Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses syldanl.1 φψχ
syldanl.2 φχθτ
Assertion syldanl φψθτ

Proof

Step Hyp Ref Expression
1 syldanl.1 φψχ
2 syldanl.2 φχθτ
3 1 ex φψχ
4 3 imdistani φψφχ
5 4 2 sylan φψθτ