Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syldanl.1 | |- ( ( ph /\ ps ) -> ch ) |
|
syldanl.2 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
||
Assertion | syldanl | |- ( ( ( ph /\ ps ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldanl.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | syldanl.2 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
|
3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
4 | 3 | imdistani | |- ( ( ph /\ ps ) -> ( ph /\ ch ) ) |
5 | 4 2 | sylan | |- ( ( ( ph /\ ps ) /\ th ) -> ta ) |