Metamath Proof Explorer


Theorem syldanl

Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses syldanl.1
|- ( ( ph /\ ps ) -> ch )
syldanl.2
|- ( ( ( ph /\ ch ) /\ th ) -> ta )
Assertion syldanl
|- ( ( ( ph /\ ps ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 syldanl.1
 |-  ( ( ph /\ ps ) -> ch )
2 syldanl.2
 |-  ( ( ( ph /\ ch ) /\ th ) -> ta )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 3 imdistani
 |-  ( ( ph /\ ps ) -> ( ph /\ ch ) )
5 4 2 sylan
 |-  ( ( ( ph /\ ps ) /\ th ) -> ta )