Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | adantl3r.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
Assertion | adantl3r | |- ( ( ( ( ( ph /\ et ) /\ ps ) /\ ch ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl3r.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
2 | id | |- ( ( ph /\ ps ) -> ( ph /\ ps ) ) |
|
3 | 2 | adantlr | |- ( ( ( ph /\ et ) /\ ps ) -> ( ph /\ ps ) ) |
4 | 3 1 | sylanl1 | |- ( ( ( ( ( ph /\ et ) /\ ps ) /\ ch ) /\ th ) -> ta ) |