Metamath Proof Explorer


Theorem sylan9

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses sylan9.1 φ ψ χ
sylan9.2 θ χ τ
Assertion sylan9 φ θ ψ τ

Proof

Step Hyp Ref Expression
1 sylan9.1 φ ψ χ
2 sylan9.2 θ χ τ
3 1 2 syl9 φ θ ψ τ
4 3 imp φ θ ψ τ