Metamath Proof Explorer


Theorem sylan9

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses sylan9.1 φψχ
sylan9.2 θχτ
Assertion sylan9 φθψτ

Proof

Step Hyp Ref Expression
1 sylan9.1 φψχ
2 sylan9.2 θχτ
3 1 2 syl9 φθψτ
4 3 imp φθψτ