Metamath Proof Explorer
		
		
		
		Description:  Nested syllogism inference conjoining dissimilar antecedents.
       (Contributed by NM, 14-May-1993)  (Proof shortened by Andrew Salmon, 7-May-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sylan9.1 | ⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) ) | 
					
						|  |  | sylan9.2 | ⊢ ( 𝜃  →  ( 𝜒  →  𝜏 ) ) | 
				
					|  | Assertion | sylan9 | ⊢  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜓  →  𝜏 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylan9.1 | ⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) ) | 
						
							| 2 |  | sylan9.2 | ⊢ ( 𝜃  →  ( 𝜒  →  𝜏 ) ) | 
						
							| 3 | 1 2 | syl9 | ⊢ ( 𝜑  →  ( 𝜃  →  ( 𝜓  →  𝜏 ) ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝜑  ∧  𝜃 )  →  ( 𝜓  →  𝜏 ) ) |