Metamath Proof Explorer


Theorem embantd

Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013)

Ref Expression
Hypotheses embantd.1 φψ
embantd.2 φχθ
Assertion embantd φψχθ

Proof

Step Hyp Ref Expression
1 embantd.1 φψ
2 embantd.2 φχθ
3 2 imim2d φψχψθ
4 1 3 mpid φψχθ