Metamath Proof Explorer


Theorem syld3an3

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an3.1 φψχθ
syld3an3.2 φψθτ
Assertion syld3an3 φψχτ

Proof

Step Hyp Ref Expression
1 syld3an3.1 φψχθ
2 syld3an3.2 φψθτ
3 simp1 φψχφ
4 simp2 φψχψ
5 3 4 1 2 syl3anc φψχτ