Description: A syllogism inference. (Contributed by NM, 20-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syld3an3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) | |
| syld3an3.2 | |- ( ( ph /\ ps /\ th ) -> ta ) | ||
| Assertion | syld3an3 | |- ( ( ph /\ ps /\ ch ) -> ta ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syld3an3.1 | |- ( ( ph /\ ps /\ ch ) -> th ) | |
| 2 | syld3an3.2 | |- ( ( ph /\ ps /\ th ) -> ta ) | |
| 3 | simp1 | |- ( ( ph /\ ps /\ ch ) -> ph ) | |
| 4 | simp2 | |- ( ( ph /\ ps /\ ch ) -> ps ) | |
| 5 | 3 4 1 2 | syl3anc | |- ( ( ph /\ ps /\ ch ) -> ta ) |