Metamath Proof Explorer


Theorem syld3an3

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an3.1
|- ( ( ph /\ ps /\ ch ) -> th )
syld3an3.2
|- ( ( ph /\ ps /\ th ) -> ta )
Assertion syld3an3
|- ( ( ph /\ ps /\ ch ) -> ta )

Proof

Step Hyp Ref Expression
1 syld3an3.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 syld3an3.2
 |-  ( ( ph /\ ps /\ th ) -> ta )
3 simp1
 |-  ( ( ph /\ ps /\ ch ) -> ph )
4 simp2
 |-  ( ( ph /\ ps /\ ch ) -> ps )
5 3 4 1 2 syl3anc
 |-  ( ( ph /\ ps /\ ch ) -> ta )