Metamath Proof Explorer


Theorem syld3an3

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an3.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
syld3an3.2 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
Assertion syld3an3 ( ( 𝜑𝜓𝜒 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syld3an3.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 syld3an3.2 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
3 simp1 ( ( 𝜑𝜓𝜒 ) → 𝜑 )
4 simp2 ( ( 𝜑𝜓𝜒 ) → 𝜓 )
5 3 4 1 2 syl3anc ( ( 𝜑𝜓𝜒 ) → 𝜏 )