Metamath Proof Explorer
		
		
		
		Description:  A syllogism inference.  (Contributed by NM, 20-May-2007)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | syld3an3.1 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜃 ) | 
					
						|  |  | syld3an3.2 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜃 )  →  𝜏 ) | 
				
					|  | Assertion | syld3an3 | ⊢  ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜏 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | syld3an3.1 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜃 ) | 
						
							| 2 |  | syld3an3.2 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜃 )  →  𝜏 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜑 ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜓 ) | 
						
							| 5 | 3 4 1 2 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜏 ) |