Metamath Proof Explorer
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof
shortened by Wolf Lammen, 26-Jun-2022)
|
|
Ref |
Expression |
|
Hypotheses |
syld3an1.1 |
⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜃 ) → 𝜑 ) |
|
|
syld3an1.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
syld3an1 |
⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syld3an1.1 |
⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜃 ) → 𝜑 ) |
2 |
|
syld3an1.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
3 |
|
simp2 |
⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜃 ) → 𝜓 ) |
4 |
|
simp3 |
⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜃 ) → 𝜃 ) |
5 |
1 3 4 2
|
syl3anc |
⊢ ( ( 𝜒 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |