Metamath Proof Explorer


Theorem syld3an1

Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof shortened by Wolf Lammen, 26-Jun-2022)

Ref Expression
Hypotheses syld3an1.1 ( ( 𝜒𝜓𝜃 ) → 𝜑 )
syld3an1.2 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
Assertion syld3an1 ( ( 𝜒𝜓𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syld3an1.1 ( ( 𝜒𝜓𝜃 ) → 𝜑 )
2 syld3an1.2 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
3 simp2 ( ( 𝜒𝜓𝜃 ) → 𝜓 )
4 simp3 ( ( 𝜒𝜓𝜃 ) → 𝜃 )
5 1 3 4 2 syl3anc ( ( 𝜒𝜓𝜃 ) → 𝜏 )