Metamath Proof Explorer


Theorem syld3an1

Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof shortened by Wolf Lammen, 26-Jun-2022)

Ref Expression
Hypotheses syld3an1.1 χ ψ θ φ
syld3an1.2 φ ψ θ τ
Assertion syld3an1 χ ψ θ τ

Proof

Step Hyp Ref Expression
1 syld3an1.1 χ ψ θ φ
2 syld3an1.2 φ ψ θ τ
3 simp2 χ ψ θ ψ
4 simp3 χ ψ θ θ
5 1 3 4 2 syl3anc χ ψ θ τ