Metamath Proof Explorer
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof
shortened by Wolf Lammen, 26-Jun-2022)
|
|
Ref |
Expression |
|
Hypotheses |
syld3an1.1 |
|
|
|
syld3an1.2 |
|
|
Assertion |
syld3an1 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syld3an1.1 |
|
2 |
|
syld3an1.2 |
|
3 |
|
simp2 |
|
4 |
|
simp3 |
|
5 |
1 3 4 2
|
syl3anc |
|