Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof shortened by Wolf Lammen, 26-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syld3an1.1 | |- ( ( ch /\ ps /\ th ) -> ph ) |
|
syld3an1.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
||
Assertion | syld3an1 | |- ( ( ch /\ ps /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | |- ( ( ch /\ ps /\ th ) -> ph ) |
|
2 | syld3an1.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
|
3 | simp2 | |- ( ( ch /\ ps /\ th ) -> ps ) |
|
4 | simp3 | |- ( ( ch /\ ps /\ th ) -> th ) |
|
5 | 1 3 4 2 | syl3anc | |- ( ( ch /\ ps /\ th ) -> ta ) |