Metamath Proof Explorer


Theorem syld3an1

Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof shortened by Wolf Lammen, 26-Jun-2022)

Ref Expression
Hypotheses syld3an1.1
|- ( ( ch /\ ps /\ th ) -> ph )
syld3an1.2
|- ( ( ph /\ ps /\ th ) -> ta )
Assertion syld3an1
|- ( ( ch /\ ps /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 syld3an1.1
 |-  ( ( ch /\ ps /\ th ) -> ph )
2 syld3an1.2
 |-  ( ( ph /\ ps /\ th ) -> ta )
3 simp2
 |-  ( ( ch /\ ps /\ th ) -> ps )
4 simp3
 |-  ( ( ch /\ ps /\ th ) -> th )
5 1 3 4 2 syl3anc
 |-  ( ( ch /\ ps /\ th ) -> ta )