Metamath Proof Explorer


Theorem ad5ant123

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Hypothesis ad5ant.1 φψχθ
Assertion ad5ant123 φψχτηθ

Proof

Step Hyp Ref Expression
1 ad5ant.1 φψχθ
2 1 3expa φψχθ
3 2 ad2antrr φψχτηθ