Metamath Proof Explorer


Theorem biadanid

Description: Deduction associated with biadani . Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses biadanid.1 φψχ
biadanid.2 φχψθ
Assertion biadanid φψχθ

Proof

Step Hyp Ref Expression
1 biadanid.1 φψχ
2 biadanid.2 φχψθ
3 2 biimpa φχψθ
4 3 an32s φψχθ
5 1 4 mpdan φψθ
6 1 5 jca φψχθ
7 2 biimpar φχθψ
8 7 anasss φχθψ
9 6 8 impbida φψχθ