Metamath Proof Explorer


Theorem 3imtr4d

Description: More general version of 3imtr4i . Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995)

Ref Expression
Hypotheses 3imtr4d.1 φψχ
3imtr4d.2 φθψ
3imtr4d.3 φτχ
Assertion 3imtr4d φθτ

Proof

Step Hyp Ref Expression
1 3imtr4d.1 φψχ
2 3imtr4d.2 φθψ
3 3imtr4d.3 φτχ
4 1 3 sylibrd φψτ
5 2 4 sylbid φθτ