Metamath Proof Explorer


Theorem 3imtr4d

Description: More general version of 3imtr4i . Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995)

Ref Expression
Hypotheses 3imtr4d.1 φ ψ χ
3imtr4d.2 φ θ ψ
3imtr4d.3 φ τ χ
Assertion 3imtr4d φ θ τ

Proof

Step Hyp Ref Expression
1 3imtr4d.1 φ ψ χ
2 3imtr4d.2 φ θ ψ
3 3imtr4d.3 φ τ χ
4 1 3 sylibrd φ ψ τ
5 2 4 sylbid φ θ τ