Metamath Proof Explorer


Theorem 3imtr4d

Description: More general version of 3imtr4i . Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995)

Ref Expression
Hypotheses 3imtr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
3imtr4d.2 ( 𝜑 → ( 𝜃𝜓 ) )
3imtr4d.3 ( 𝜑 → ( 𝜏𝜒 ) )
Assertion 3imtr4d ( 𝜑 → ( 𝜃𝜏 ) )

Proof

Step Hyp Ref Expression
1 3imtr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3imtr4d.2 ( 𝜑 → ( 𝜃𝜓 ) )
3 3imtr4d.3 ( 𝜑 → ( 𝜏𝜒 ) )
4 1 3 sylibrd ( 𝜑 → ( 𝜓𝜏 ) )
5 2 4 sylbid ( 𝜑 → ( 𝜃𝜏 ) )