Metamath Proof Explorer


Theorem sylbid

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
sylbid.2 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion sylbid ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 sylbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sylbid.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 1 biimpd ( 𝜑 → ( 𝜓𝜒 ) )
4 3 2 syld ( 𝜑 → ( 𝜓𝜃 ) )