Metamath Proof Explorer


Theorem sylbid

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylbid.1
|- ( ph -> ( ps <-> ch ) )
sylbid.2
|- ( ph -> ( ch -> th ) )
Assertion sylbid
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 sylbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 sylbid.2
 |-  ( ph -> ( ch -> th ) )
3 1 biimpd
 |-  ( ph -> ( ps -> ch ) )
4 3 2 syld
 |-  ( ph -> ( ps -> th ) )