Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
sylbid.2 | |- ( ph -> ( ch -> th ) ) |
||
Assertion | sylbid | |- ( ph -> ( ps -> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | sylbid.2 | |- ( ph -> ( ch -> th ) ) |
|
3 | 1 | biimpd | |- ( ph -> ( ps -> ch ) ) |
4 | 3 2 | syld | |- ( ph -> ( ps -> th ) ) |