Metamath Proof Explorer


Theorem com25

Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 . (Contributed by Jeff Hankins, 28-Jun-2009)

Ref Expression
Hypothesis com5.1 φψχθτη
Assertion com25 φτχθψη

Proof

Step Hyp Ref Expression
1 com5.1 φψχθτη
2 1 com24 φθχψτη
3 2 com45 φθχτψη
4 3 com24 φτχθψη