Metamath Proof Explorer


Theorem bitr2id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypotheses bitr2id.1 φ ψ
bitr2id.2 χ ψ θ
Assertion bitr2id χ θ φ

Proof

Step Hyp Ref Expression
1 bitr2id.1 φ ψ
2 bitr2id.2 χ ψ θ
3 1 2 syl5bb χ φ θ
4 3 bicomd χ θ φ