Metamath Proof Explorer


Theorem bitr2id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypotheses bitr2id.1 φψ
bitr2id.2 χψθ
Assertion bitr2id χθφ

Proof

Step Hyp Ref Expression
1 bitr2id.1 φψ
2 bitr2id.2 χψθ
3 1 2 bitrid χφθ
4 3 bicomd χθφ