Metamath Proof Explorer


Theorem bitr2id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypotheses bitr2id.1 ( 𝜑𝜓 )
bitr2id.2 ( 𝜒 → ( 𝜓𝜃 ) )
Assertion bitr2id ( 𝜒 → ( 𝜃𝜑 ) )

Proof

Step Hyp Ref Expression
1 bitr2id.1 ( 𝜑𝜓 )
2 bitr2id.2 ( 𝜒 → ( 𝜓𝜃 ) )
3 1 2 bitrid ( 𝜒 → ( 𝜑𝜃 ) )
4 3 bicomd ( 𝜒 → ( 𝜃𝜑 ) )