Metamath Proof Explorer


Theorem bi2anan9

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995)

Ref Expression
Hypotheses bi2an9.1 φψχ
bi2an9.2 θτη
Assertion bi2anan9 φθψτχη

Proof

Step Hyp Ref Expression
1 bi2an9.1 φψχ
2 bi2an9.2 θτη
3 pm4.38 ψχτηψτχη
4 1 2 3 syl2an φθψτχη