Metamath Proof Explorer
Description: Deduction joining two equivalences to form equivalence of conjunctions.
(Contributed by NM, 31-Jul-1995)
|
|
Ref |
Expression |
|
Hypotheses |
bi2an9.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
bi2an9.2 |
⊢ ( 𝜃 → ( 𝜏 ↔ 𝜂 ) ) |
|
Assertion |
bi2anan9 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∧ 𝜏 ) ↔ ( 𝜒 ∧ 𝜂 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bi2an9.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
bi2an9.2 |
⊢ ( 𝜃 → ( 𝜏 ↔ 𝜂 ) ) |
3 |
|
pm4.38 |
⊢ ( ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝜏 ↔ 𝜂 ) ) → ( ( 𝜓 ∧ 𝜏 ) ↔ ( 𝜒 ∧ 𝜂 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∧ 𝜏 ) ↔ ( 𝜒 ∧ 𝜂 ) ) ) |