Metamath Proof Explorer
		
		
		
		Description:  Deduction joining two equivalences to form equivalence of conjunctions.
       (Contributed by NM, 19-Feb-1996)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						bi2an9.1 | 
						⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
					
					
						 | 
						 | 
						bi2an9.2 | 
						⊢ ( 𝜃  →  ( 𝜏  ↔  𝜂 ) )  | 
					
				
					 | 
					Assertion | 
					bi2anan9r | 
					⊢  ( ( 𝜃  ∧  𝜑 )  →  ( ( 𝜓  ∧  𝜏 )  ↔  ( 𝜒  ∧  𝜂 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bi2an9.1 | 
							⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bi2an9.2 | 
							⊢ ( 𝜃  →  ( 𝜏  ↔  𝜂 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bi2anan9 | 
							⊢ ( ( 𝜑  ∧  𝜃 )  →  ( ( 𝜓  ∧  𝜏 )  ↔  ( 𝜒  ∧  𝜂 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							⊢ ( ( 𝜃  ∧  𝜑 )  →  ( ( 𝜓  ∧  𝜏 )  ↔  ( 𝜒  ∧  𝜂 ) ) )  |