Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi2an9.1 | |- ( ph -> ( ps <-> ch ) )  | 
					|
| bi2an9.2 | |- ( th -> ( ta <-> et ) )  | 
					||
| Assertion | bi2anan9r | |- ( ( th /\ ph ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi2an9.1 | |- ( ph -> ( ps <-> ch ) )  | 
						|
| 2 | bi2an9.2 | |- ( th -> ( ta <-> et ) )  | 
						|
| 3 | 1 2 | bi2anan9 | |- ( ( ph /\ th ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) )  | 
						
| 4 | 3 | ancoms | |- ( ( th /\ ph ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) )  |