Description: Theorem *4.38 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.38 | ⊢ ( ( ( 𝜑 ↔ 𝜒 ) ∧ ( 𝜓 ↔ 𝜃 ) ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( ( 𝜑 ↔ 𝜒 ) ∧ ( 𝜓 ↔ 𝜃 ) ) → ( 𝜑 ↔ 𝜒 ) ) | |
2 | simpr | ⊢ ( ( ( 𝜑 ↔ 𝜒 ) ∧ ( 𝜓 ↔ 𝜃 ) ) → ( 𝜓 ↔ 𝜃 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( ( ( 𝜑 ↔ 𝜒 ) ∧ ( 𝜓 ↔ 𝜃 ) ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |