Description: Theorem *4.38 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.38 | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ( ph /\ ps ) <-> ( ch /\ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ph <-> ch ) ) |
|
2 | simpr | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ps <-> th ) ) |
|
3 | 1 2 | anbi12d | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ( ph /\ ps ) <-> ( ch /\ th ) ) ) |