Metamath Proof Explorer


Theorem com4l

Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994) (Proof shortened by Mel L. O'Cat, 15-Aug-2004)

Ref Expression
Hypothesis com4.1 φψχθτ
Assertion com4l ψχθφτ

Proof

Step Hyp Ref Expression
1 com4.1 φψχθτ
2 1 com3l ψχφθτ
3 2 com34 ψχθφτ